122 research outputs found

    Gadd45a promotes DNA demethylation through TDG

    Get PDF
    Growth arrest and DNA-damage-inducible protein 45 (Gadd45) family members have been implicated in DNA demethylation in vertebrates. However, it remained unclear how they contribute to the demethylation process. Here, we demonstrate that Gadd45a promotes active DNA demethylation through thymine DNA glycosylase (TDG) which has recently been shown to excise 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) generated in Ten-eleven-translocation (Tet)—initiated oxidative demethylation. The connection of Gadd45a with oxidative demethylation is evidenced by the enhanced activation of a methylated reporter gene in HEK293T cells expressing Gadd45a in combination with catalytically active TDG and Tet. Gadd45a interacts with TDG physically and increases the removal of 5fC and 5caC from genomic and transfected plasmid DNA by TDG. Knockout of both Gadd45a and Gadd45b from mouse ES cells leads to hypermethylation of specific genomic loci most of which are also targets of TDG and show 5fC enrichment in TDG-deficient cells. These observations indicate that the demethylation effect of Gadd45a is mediated by TDG activity. This finding thus unites Gadd45a with the recently defined Tet-initiated demethylation pathwa

    Neuronally released vasoactive intestinal polypeptide alters atrial electrophysiological properties and may promote atrial fibrillation

    Get PDF
    BACKGROUND: Vagal hyperactivity promotes atrial fibrillation (AF), which has been almost exclusively attributed to acetylcholine. Vasoactive intestinal polypeptide (VIP) and acetylcholine are neurotransmitters co-released during vagal stimulation. Exogenous VIP has been shown to promote AF by shortening action potential duration (APD), increasing APD spatial heterogeneity, and causing intra-atrial conduction block. OBJECTIVE: The purpose of this study was to investigate the effects of neuronally released VIP on atrial electrophysiologic properties during vagal stimulation. METHODS: We used a specific VIP antagonist (H9935) to uncover the effects of endogenous VIP released during vagal stimulation in canine hearts. RESULTS: H9935 significantly attenuated (1) the vagally induced shortening of atrial effective refractory period and widening of atrial vulnerability window during stimulation of cervical vagosympathetic trunks (VCNS) and (2) vagal effects on APD during stimulation through fat-pad ganglion plexus (VGPS). Atropine completely abolished these vagal effects during VCNS and VGPS. In contrast, VGPS-induced slowing of local conduction velocity was completely abolished by either VIP antagonist or atropine. In pacing-induced AF during VGPS, maximal dominant frequencies and their spatial gradients were reduced significantly by H9935 and, more pronouncedly, by atropine. Furthermore, VIP release in the atria during vagal stimulation was inhibited by atropine, which may account for the concealment of VIP effects with muscarinic blockade. CONCLUSION: Neuronally released VIP contributes to vagal effects on atrial electrophysiologic properties and affects the pathophysiology of vagally induced AF. Neuronal release of VIP in the atria is inhibited by muscarinic blockade, a novel mechanism by which VIP effects are concealed by atropine during vagal stimulation

    Application of carbon nanoparticles combined with refined extracapsular anatomy in endoscopic thyroidectomy

    Get PDF
    ObjectiveTo evaluate the value of refined extracapsular anatomy combined with carbon nanoparticle suspension tracing technology for protecting parathyroid function and the thoroughness of lymph node dissection in the central region during endoscopic thyroid cancer surgery.Patients and methodsRetrospective clinical data analysis was performed on 108 patients who underwent endoscopic thyroid cancer surgery at the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital) from November 2019 to November 2022. Before surgery, thyroid function tests, color Doppler ultrasounds and neck-enhanced CT scans were performed on all patients. Cytopathological diagnosis obtained via ultrasound-guided fine-needle aspiration served as confirmation for the primary diagnosis. It was determined whether to perform a total thyroidectomy or a hemithyroidectomy (HT) together with preventive unilateral (ipsilateral) central neck dissection. Follow-up times were 1 to 34 months.ResultsTransient neuromuscular symptoms were present in 3.70% (4/108) cases, with no permanent neuromuscular symptoms or permanent hypoparathyroidism. Regarding transient hypoparathyroidism, the patients recovered after three months and did not need long-term calcium supplementation. The number of harvested LNs (mean± SD) was 5.54 ± 3.84, with ≤5 in 57.41% (62/108) and >5 in 42.59% (46/108) cases. The number of patients with metastatic LNs was 37.96% (41/108), with ≤2 in 65.85% (27/41) and >2 in 34.15% (14/41) cases.ConclusionsFine extracapsular anatomy combined with carbon nanoparticle suspension tracing is effective in endoscopic thyroid cancer surgery. It can improve the thoroughness of prophylactic central neck dissection and recognition of the parathyroid gland and avoid parathyroid injury and other complications to effectively protect parathyroid function

    Denervation as a Common Mechanism Underlying Different Pulmonary Vein Isolation Strategies for Paroxysmal Atrial Fibrillation: Evidenced by Heart Rate Variability after Ablation

    Get PDF
    Backgrounds. Segmental and circumferential pulmonary vein isolations (SPVI and CPVI) have been demonstrated to be effective therapies for paroxysmal atrial fibrillation (PAF). PVI is well established as the endpoint of different ablation techniques, whereas it may not completely account for the long-term success. Methods. 181 drug-refractory symptomatic PAF patients were referred for segmental or circumferential PVI (SPVI = 67; CPVI = 114). Heart rate variability (HRV) was assessed before and after the final ablation. Results. After following up for 62.23±12.75 months, patients underwent 1.41±0.68 procedures in average, and the success rates in SPVI and CPVI groups were comparable. 119 patients were free from AF recurrence (SPVI-S, n=43; CPVI-S, n=76). 56 patients had recurrent episodes (SPVI-R, n=21; CPVI-R, n=35). Either ablation technique decreased HRV significantly. Postablation SDNN and rMSSD were significantly lower in SPVI-S and CPVI-S subgroups than in SPVI-R and CPVI-R subgroups (SPVI-S versus SPVI-R: SDNN 91.8±32.6 versus 111.5±36.2 ms, rMSSD 47.4±32.3 versus 55.2±35.2 ms; CPVI-S versus CPVI-R: SDNN 83.0±35.6 versus 101.0±40.7 ms, rMSSD 41.1±22.9 versus 59.2±44.8 ms; all P<0.05). Attenuation of SDNN and rMSSD remained for 12 months in SPVI-S and CPVI-S subgroups, whereas it recovered earlier in SPVI-R and CPVI-R subgroups. Multivariate logistic regression analysis identified SDNN as the only predictor of long-term success. Conclusions. Beyond PVI, denervation may be a common mechanism underlying different ablation strategies for PAF

    Characterization of Non-heading Mutation in Heading Chinese Cabbage (Brassica rapa L. ssp. pekinensis)

    Get PDF
    Heading is a key agronomic trait of Chinese cabbage. A non-heading mutant with flat growth of heading leaves (fg-1) was isolated from an EMS-induced mutant population of the heading Chinese cabbage inbred line A03. In fg-1 mutant plants, the heading leaves are flat similar to rosette leaves. The epidermal cells on the adaxial surface of these leaves are significantly smaller, while those on the abaxial surface are much larger than in A03 plants. The segregation of the heading phenotype in the F2 and BC1 population suggests that the mutant trait is controlled by a pair of recessive alleles. Phytohormone analysis at the early heading stage showed significant decreases in IAA, ABA, JA and SA, with increases in methyl IAA and trans-Zeatin levels, suggesting they may coordinate leaf adaxial-abaxial polarity, development and morphology in fg-1. RNA-sequencing analysis at the early heading stage showed a decrease in expression levels of several auxin transport (BrAUX1, BrLAXs, and BrPINs) and responsive genes. Transcript levels of important ABA responsive genes, including BrABF3, were up-regulated in mid-leaf sections suggesting that both auxin and ABA signaling pathways play important roles in regulating leaf heading. In addition, a significant reduction in BrIAMT1 transcripts in fg-1 might contribute to leaf epinastic growth. The expression profiles of 19 genes with known roles in leaf polarity were significantly different in fg-1 leaves compared to wild type, suggesting that these genes might also regulate leaf heading in Chinese cabbage. In conclusion, leaf heading in Chinese cabbage is controlled through a complex network of hormone signaling and abaxial-adaxial patterning pathways. These findings increase our understanding of the molecular basis of head formation in Chinese cabbage

    Gatorbulin-1, a distinct cyclodepsipeptide chemotype, targets a seventh tubulin pharmacological site

    Get PDF
    35 p.-5 fig.-1 tab.Tubulin-targeted chemotherapy has proven to be a successful and wide spectrum strategy against solid and liquid malignancies. Therefore, new ways to modulate this essential protein could lead to new antitumoral pharmacological approaches. Currently known tubulin agents bind to six distinct sites at α/β-tubulin either promoting microtubule stabilization or depolymerization. We have discovered a seventh binding site at the tubulin intradimer interface where a novel microtubule-destabilizing cyclodepsipeptide, termed gatorbulin-1 (GB1), binds. GB1 has a unique chemotype produced by a marine cyanobacterium. We have elucidated this dual, chemical and mechanistic, novelty through multidimensional characterization, starting with bioactivity-guided natural product isolation and multinuclei NMR-based structure determination, revealing the modified pentapeptide with a functionally critical hydroxamate group; and validation by total synthesis. We have investigated the pharmacology using isogenic cancer cell screening, cellular profiling, and complementary phenotypic assays, and unveiled the underlying molecular mechanism by in vitro biochemical studies and high-resolution structural determination of the α/β-tubulin−GB1 complex.This research was supported by the NIH, National Cancer Institute Grants R01CA172310 (to H.L.) and R50CA211487 (to R.R.) and National Institute of General Medical Sciences Grant P41GM086210 (to H.L. and V.J.P.), Commercialization Fund Award from University of Florida (UF) Innovate (UF Office of Technology Licensing), and Debbie and Sylvia DeSantis Chair professorship (H.L.). The biochemical and the crystal structure work was supported by grants Ministerio de Ciencia e Innovación PID2019-10454RB-I00/AEI/10.13039/501100011033, Fondo de Investigaciones Sanitarias and COV20/01007E Proyecto Intramural Especial 201920E111 from Consejo Superior de Investigaciones Científicas (to J.F.D.) and European Union H2020-MSCA-ITN-2019 860070 TUBINTRAIN grant (to J.F.D. and A.E.P.).Peer reviewe
    • …
    corecore